3D Bioplotter Research Papers

Displaying all papers by L. Wu (3 results)

Fuzzy Evaluation of Rapid Prototyping Methods for Latticed Silicone Pieces

Silicon 2020 Volume 12, Pages 1995-2004

In order to compare the influence of the manufacturing methods on the property of silicone samples, the latticed structure of sample are designed, the silicone material is prepared and the silicone sample are produced by 3D printing and injection molding respectively. Four performance indexes of latticed silicone parts including the error of line width, the error of quality, tensile strength at break and elongation at break are proposed and measured. A fuzzy comprehensive evaluation system for evaluating the optimal forming method of the parts is provided. The performance indexes are used as evaluation factors, and the importance degree of the…

Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro

Molecular Medicine Reports 2018 Volume 18 Issue 2, Pages 1335-1344

Three‑dimensional printed (3DP) scaffolds have become an excellent resource in alveolar bone regeneration. However, selecting suitable printable materials remains a challenge. In the present study, 3DP scaffolds were fabricated using three different ratios of poly (ε‑caprolactone) (PCL) and poly‑lactic‑co‑glycolic acid (PLGA), which were 0.1PCL/0.9PLGA, 0.5PCL/0.5PLGA and 0.9PCL/0.1PLGA. The surface characteristics and degradative properties of the scaffolds, and the response of human periodontal ligament stem cells (hPDLSCs) on the scaffolds, were assessed to examine the preferable ratio of PCL and PLGA for alveolar bone regeneration. The results demonstrated that the increased proportion of PLGA markedly accelerated the degradation, smoothed the surface…

In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal

Integrative Biology 2013 Volume 5, Pages 889-898

Animal experiments help to progress and ensure safety of an increasing number of novel therapies, drug development and chemicals. Unfortunately, these also lead to major ethical concerns, costs and limited experimental capacity. We foresee a coercion of all these issues by implantation of well systems directly into vertebrate animals. Here, we used rapid prototyping to create wells with biomaterials to create a three-dimensional (3D) well-system that can be used in vitro and in vivo. First, the well sizes and numbers were adjusted for 3D cell culture and in vitro screening of molecules. Then, the functionality of the wells was evaluated…